Maximum likelihood estimation of long-term HIV dynamic models and antiviral response.
نویسندگان
چکیده
HIV dynamics studies, based on differential equations, have significantly improved the knowledge on HIV infection. While first studies used simplified short-term dynamic models, recent works considered more complex long-term models combined with a global analysis of whole patient data based on nonlinear mixed models, increasing the accuracy of the HIV dynamic analysis. However statistical issues remain, given the complexity of the problem. We proposed to use the SAEM (stochastic approximation expectation-maximization) algorithm, a powerful maximum likelihood estimation algorithm, to analyze simultaneously the HIV viral load decrease and the CD4 increase in patients using a long-term HIV dynamic system. We applied the proposed methodology to the prospective COPHAR2-ANRS 111 trial. Very satisfactory results were obtained with a model with latent CD4 cells defined with five differential equations. One parameter was fixed, the 10 remaining parameters (eight with between-patient variability) of this model were well estimated. We showed that the efficacy of nelfinavir was reduced compared to indinavir and lopinavir.
منابع مشابه
Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملHierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system.
HIV dynamics studies have significantly contributed to the understanding of HIV infection and antiviral treatment strategies. But most studies are limited to short-term viral dynamics due to the difficulty of establishing a relationship of antiviral response with multiple treatment factors such as drug exposure and drug susceptibility during long-term treatment. In this article, a mechanism-bas...
متن کاملModeling Long-term Longitudinal Hiv Dynamics with Application to an Aids Clinical Study
A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiretroviral (ARV) therapies in AIDS clinical trials. This marker can be used to assess the ARV potency of therapies, but is easily affected by drug exposures, drug resistance and other factors during the long-term treatment evaluation process. HIV dynamic studies have significantly contributed to th...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 67 1 شماره
صفحات -
تاریخ انتشار 2011